How to Run the HHC Simulator

Following instructions describes how to execute the HHC simulator with key predistribution.
The simulator includes two separate programs:

o simulator — the HHC simulator
® gen_key — generate key index files based on combinatorial design or random block
merging in combinatorial design

Note that these programs are not developed to be input driven since the same simulation
parameters are used to collect multiple samples using shell scripts. If specific changes are
required relevant header files needs to be updates and program needs be recompiled as explained
in section 3. The submitted source code is preconfigured with parameters to simulate a 30x30
network with random node placement, only half of the sensor filed will be covered (g = 0.5).
Some of the simulation results are shown on the terminal and some of the data is dumped to
several files for further analysis. Table 1 summarize list of parameter values.

Table 1 — List of preconfigured parameters and corresponding values.

Parameter Value
Grid size 30x30
Distance between 2 grid points (both X and Y direction) |6 units
Location of root node (15, 15)
Node placement probability (g) on the network 0.5
Node placement on network Random
Node-to-node communication range (R) 30 units
CH-to-CH communication range 3 x 30 units
Max_hops (single hop clusters) 1
TTL 3
Use KPS Enabled
Consider compromised nodes Disabled
Number of key blocks merged (z) 4

Note: The source code was developed and tested on both Ubuntu 32-bit and 64-bit platforms. It
should work on another Linux variant without a problem.

1. Key File Generator

First of all the key generator needs to be complied from the source code. The source code for key
generator is stored in the gen_key directory inside the HHC_KPS directory. Use the following
code segment to compile the program.

dilumb@C20303:~/$ cd HHC_KPS
dilumb@C20303:~/HHC_KPSS$ cd gen_key
dilumb@C20303:~/HHC_KPS/gen_key$

Then compile the source using the make command.
dilumb@C20303:~/HHC_KPS/gen_key$ make

If the compilation is successful you should see something similar to the following:
gcc —-c kps.c
gcc —-c gen_key.c
gcc kps.o gen_key.o -o gen_key -1lm

If the compilation is successful a file named gen_key should be generated.

dilumbQC20303:~/HHC_pkd/HHC_KPS/gen_key$ 1ls
gen_key gen_key.c gen_key.o key_idl.txt kps.c kps.h kps.o
Makefile

Then we can use the gen_key program to generate key index file based on the Lee-Stinson
approach as follows:

dilumb@C20303:~/HHC_pkd/HHC_KPS/gen_key$./gen_key

Enter p (primer or prime power) :5

Enter k (no of keys per block) :3
Enter z (no of blocks per node):1

In the above example we have selected p = 5, k =3 and z = [. If z > 1, Chakrabarthi-Maitra-Roy
approach is used to generate the key index file. All the key indexes will be saved in the
key_id.txt file. Sample key_id.txt file for above input is shown below.

15 25 5 3 1

0 0 0 0 1 0 2 0
0 1 0 1 1 1 2 1
0 2 0 2 1 2 2 2
0 3 0 3 1 3 2 3
0 4 0 4 1 4 2 4
1 0 0 0 1 1 2 2
1 1 0 1 1 2 2 3
1 2 0 2 1 3 2 4
1 3 0 3 1 4 2 0
1 4 0 4 1 0 2 1
2 0 0 0 1 2 2 4
2 1 0 1 1 3 2 0
2 2 0 2 1 4 2 1
2 3 0 3 1 0 2 2
2 4 0 4 1 1 2 3
3 0 0 0 1 3 2 1
3 1 0 1 1 4 2 2
3 2 0 2 1 0 2 3
3 3 0 3 1 1 2 4
3 4 0 4 1 2 2 0
4 0 0 0 1 4 2 3
4 1 0 1 1 0 2 4
4 2 0 2 1 1 2 0
4 3 0 3 1 2 2 1
4 4 0 4 1 3 2 2

This file needs to be copied to the simulator directory if to be used within simulator.

2. HHC Simulator

Like the key index generator, the simulator needs to be complied from the source code.
Simulator source code is in the HHC_KPS directory.

Use following commons to compile the simulator:

dilumb@C20303:~/HHC_pkd/HHC_KPS/gen_key$ cd ..
dilumb@C20303:~/HHC_pkd/HHC_KPS/$ make

If the compilation is successful you should see something similar to the following

gcc —c print_data.c -Wunused

gcc —-c kps.c -Wunused

gcc —-c energy.c -Wunused

gcc —c simulator.c -Wunused

gcc print_data.o kps.o energy.o simulator.o —-o simulator -1lm -Wunused

This will generate an executable file named simulator.

Before running the simulator makes sure that the key index file (key_id.txt) exists, if you are
using KPS with HHC algorithm. If such a file does not exist generate a file using gen_key. Use
p =43, k=9 and z = 4 to generate a key file for the network with 450 nodes (¢ = 0.5). Then
copy that file to the HHC_KPS directory.

Use following command to execute the simulator:

dilumb@C20303:~/HHC_pkd/HHC_KPSS$./simulator
Can't continue. Initial node doesn't exist

If random node placement did not place the root node in the middle of the sensor field the
simulator cannot continue. In such a case rerun the program, you may need to rerun several
times. This is not a problem in pregenerated networks because we can pick only networks with
the root node.

Following output indicates successful execution of the simulator.

dilumb@C20303:~//HHC_pkd/HHC_KPSS ./simulator
No cluster: 1 No common key: 1
No of messages delivered: 20752

It indicates the number of nodes without a cluster, number of nodes without a common key with
a nearby Cluster Head (CH) and number of messages delivered by the network before the first
node die.

The simulator also shows the placement of nodes in the network and their clusters. Node belongs
to the same cluster is shown using the same symbol. Symbol followed by a period (.) sign
indicates a CH. Grid points without a node is also indicated by a period (.) sign. Following is a
sample output.

.19 . H HHHH. . S SS S S g g 999gg
1.9.1 9 9 9 HHHHH . ?.. S S S S S g g g
.9 . HHHH.H.HS. S S . . g g
9X9 .9 9H H H 33 3. 3 S S S5 . g g .
... 9999 H . 2?2333 . .3 ... 5555555 9g0U
9 . 9 2 2 33 . 3. .3555 . 55 U
X 9 X X 2 2 . 2 .3 .33 3 55 .55 .
. X 2222 .3 3. . 33 5 . 5 .
X. 2.2 .. 23333 33 55 .5.55 . 5
. 22.22 .223 . .3 3 5 . 55 5 U.
XX X222 2 22 .331333 35 55 5 E
C X 2 2 2 2 . 1 5 5 . 55 E
.C .. 222 .. 2. 11 1.1 $ 5 . 5 E E
C ccC . 2 2 2 1 11.111E . E E. . E
ccCccCcA. A A A 1 1 11 E.E . E . E
cc.A. 1 1 1.$.1 $ 1 . EEEEE E
C C.A A A A 1 S . E E
.. A A . AAA1I1 o1 S EE .E . EE
c cC A A A A . 1 .1111 1.8 .00 O. .o
Cc C < A A A 1 N111 1 00O o . 0O
cccaAa A A . N N1 4 4 4 4 0 . 0O .
. C << . N NNN 4 4 . . 4 (OJNe) o .
? < < < N N.N N 4 4 . 4 4 (ONN®)
. < < N N o . N 4 4 4 .oe..
?.< < < N N . N 4 . 4 4 4 4.4 4 e e e
! . < N . N N 4444 . K K
. ! < . < N N N N .. 44444 . K K K
? 0! < L& .. 4 .4 .44 . . 4. . KK.
Pt Sl s s s s L & &44 0 0440 0 0K LKL
[ot & & . . &L L L4 .L.L KZK.K

Simulator also stores some of the simulation data in following files for further processing:

e circular.txt - Dump the maximum achievable circularity of each cluster in the network

e common_keys.txt - Dump the average number of common keys a node share with its
neighbors.

e nodes.txt — Dump all the node related data such as their node ID, cluster ID, node ID of
the CH, depth in the cluster tree, number of messages forwarded by a node, etc.

Rerun the simulator to see the effect of random node placement and cluster formation. Section 3
describes meaning of the parameters and values that can be varied. Each time a parameter is
change simulator needs to be recompiled.

3. Simulator Parameters

The types.h files include all the use configurable parameters. Each parameter value should be
appropriately set and program should be recompiled before executing the simulator. Table 2
indicates parameters, their meaning and suitable values. Only parameters that can be varied by
the user given.

Table 2 — List of parameters in the types.h file.

Parameter Description Value
GRIDX lc?iisetjlg(c)i)between two nodes in the grid (X Any integer > 1
GRIDY lc?iisetjlg(c)i)between two nodes in the grid (Y Any integer > 1
NODESX Number of nodes in X direction Any integer > 10
NODESY Number of nodes in Y direction Any integer > 10
STARTX X coordinate of root node NODESX/2
STARTY Y coordinate of root node NODESY/2
NODEPROB Node placement probability (q) 1/q
R Node-to-node communication range (R) > GRIDX
MAX_HOPS Max_hops (single hop clusters) 1
MAX_TTL TTL 2xMAX_HOPS + 1

DATA_PACKET_SIZE

Size of a data packet

Any integer > 1

ACK_PACKET_SIZE

Size of a acknowledgement packet

Any integer > 1

CLUSTER_BCAST_SIZE

Size of a cluster formation broadcast packet

Any integer > 1

KEY_INDEX_SIZE

Size of key index

16 bits x MAX_Z

USE_NODE_FILE

Whether use a pregenerated node file

0 —random node placement
1 — use pregenerated node file

SHOW_NODE_DATA

Show node data on terminal

0 — No data on terminal
1 - Dump data to terminal

CIRCLEFILE File to save circularity data circular.txt

NODEFILE File to save node data nodes.txt

NODELIST Pregenerated node file input_nodes.txt
File to dump node energy related data

ENERGYFILE (disabled) energy.txt

KEYFILE Pregenerated key index file used for KPS key_id.txt

COM_KEYFILE

File to dump average number of common
keys of a node with its neighbors

common_keys.txt

0 — Do not use KPS

USE_KPS Use key predistribution 1 — Use KPS
0 — No compromised nodes
NODE_COMP Nodes are compromised 1 — Consider compromised
nodes
COMP_NODES Number of compromised nodes Any integer > 1
MAX_Z Number of key blocks merged (z) 2<z<4

